Euclid matematikawan Yunani (lahir 350 SM), buku Element menuliskan langkah-langkah untuk menemukan pembagi bersama terbesar (common greatest divisor atau gcd), dari dua buah bilangan bulat, m dan n. pembagi bersama terbesar dari dua buah bilangan bulat tak negatif adalah bilangan bulat positif terbesar yang habis membagi kedua bilangan tersebut.
PembahasanJawaban yang benar untuk pertanyaan tersebut adalah C Ingat! Nilai minimum tercapai ketika turunan pertama bernilai 0 p ′ = 0 Perhatikan perhitungan berikut ini! 3 m − n n ​ = = ​ 60 3 m − 60 ​ Substitusi n pada persamaan , diperoleh p ​ = = ​ m 2 + n 2 m 2 + 3 m − 60 2 ​ Nilai minimum tercapai saat p ′ 2 m + 2 â‹… 3 m − 60 â‹… 3 2 m + 6 3 m − 60 2 m + 18 m − 360 20 m − 360 20 m m ​ = = = = = = = ​ 0 0 0 0 0 360 18 ​ Sehingga, nilai minium dari yaitu p ​ = = = = = = ​ m 2 + 3 m − 60 1 8 2 + 3 18 − 60 2 324 + 54 − 60 2 324 + − 6 2 324 + 36 360 ​ Oleh karena itu, jawaban yang benar adalah yang benar untuk pertanyaan tersebut adalah C Ingat! Nilai minimum tercapai ketika turunan pertama bernilai Perhatikan perhitungan berikut ini! Substitusi pada persamaan , diperoleh Nilai minimum tercapai saat Sehingga, nilai minium dari yaitu Oleh karena itu, jawaban yang benar adalah C.Nilaiminimum dari p = m^2 + n^2 adalah .. - 13981524 Pengguna Brainly Pengguna Brainly 19.01.2018 Matematika Sekolah Menengah Atas terjawab • terverifikasi oleh ahli Dua bilangan bulat m dan n memenuhi hubungan 2m + n = -40. Nilai minimum dari p = m^2 + n^2 adalah .. A. 405 B. 395 C. 320 D. 260 E. 200 1 Lihat jawaban Iklan Iklan PembahasanIngat, Penjumlahan pecahan bentuk aljabar Diketahui jika m dan n adalah bilangan bulat positif m 1 ​ + n 1 ​ = 12 5 ​ m 1 ​ + n 1 ​ mn n + m ​ 5 mn 5 mn 5 mn − 12 m m 5 n − 12 m ​ = = = = = = = ​ 12 5 ​ 12 5 ​ 12 n + m 12 n + 12 m 12 n 12 n 5 n − 12 12 n ​ ​ Selanjutnya, kita menentukan nilai dari m yang merupakan bilangan bulat positif, dengan cara mencoba substitusi sembarang bilangan bulat positif n Misal n = 3 ⇒ m = 5 n − 12 12 n ​ = 5 3 − 12 12 3 ​ = 15 − 12 36 ​ = 3 36 ​ = 12 Misal n = 4 ⇒ m = 5 n − 12 12 n ​ = 5 4 − 12 12 4 ​ = 20 − 12 48 ​ = 8 48 ​ = 6 â–ºMenghitung nilai dari m 2 + n 2 yang terbesar Untuk m = 12 dan n = 3 ⇒ m 2 + n 2 = 1 2 2 + 3 2 = 144 + 9 = 153 Untuk m = 6 dan n = 4 ⇒ m 2 + n 2 = 6 2 + 4 2 = 36 + 16 = 52 Dengan demikian, nilaidari m 2 + n 2 yang terbesar adalah 153 Oleh karena itu, jawaban yang benar adalah B .Ingat, Penjumlahan pecahan bentuk aljabar Diketahui jika dan adalah bilangan bulat positif Selanjutnya, kita menentukan nilai dari yang merupakan bilangan bulat positif, dengan cara mencoba substitusi sembarang bilangan bulat positif Misal ⇒ Misal ⇒ â–ºMenghitung nilai dari yang terbesar Untuk ⇒ Untuk ⇒ Dengan demikian, nilai dari yang terbesar adalah Oleh karena itu, jawaban yang benar adalah B.
Jawabanpaling sesuai dengan pertanyaan Jika m dan n adalah dua bilangan bulat berapakah 2m-5n Diketahui : (1) m - n = 5 (2) m/n =
Mahasiswa/Alumni Universitas Negeri Yogyakarta08 Februari 2022 1542Halo Nadya, kakak bantu jawab ya Jawaban A Pernyataan 1 SAJA cukup untuk menjawab pertanyaan, tetapi pernyataan 2 SAJA tidak cukup Pembahasan Diketahui bahwa m dan n merupakan bilangan bulat positif. Pertanyaannya apakah m - n kelipatan 5? Pernyataan 1 m - n kelipatan 10, jika suatu bilangan kelipatan 10 maka bilangan tersebut juga kelipatan 2 dan kelipatan 5. Pernyataan 2 n kelipatan 5, untuk menjawab m - n juga kelipatan 5 sangatlah tergantung pada nilai m. Dengan demikian, jawaban yang benar adalah opsi A berupa pernyataan 1 SAJA cukup untuk menjawab pertanyaan, tetapi pernyataan 2 SAJA tidak cukup. Semoga membantu ya
Misalkanm dan n adalah bilangan bulat positif yang memenuhi 1/m + 1/n = 4/7. Dari perhitungan di atas kita dapat bisa urai menjadi dua persamaan: m + n = 4 mn = 7 Selanjutnya kita masukkan ke dalam persamaan n 2 + m 2, sehingga: (n + m) 2 = n 2 + m 2 + 2mn n 2 + m 2 = (n + m) 2
Dua buah bilangan bulat a dan b dikatakan relatif prima jika PBBa, b = 1. Contoh i 20 dan 3 relatif prima sebab PBB20, 3 = 1ii 7 dan 11 relatif prima karena PBB7, 11 = 1iii 20 dan 5 tidak relatif prima sebab PBB20, 5 = 5 ≠1 Dikaitkan dengan kombinasi linier, jika a dan b relatif prima, maka terdapat bilangan bulat m dan n sedemikian sehingga ma + nb = 1 Contoh Bilangan 20 dan 3 adalah relatif prima karena PBB20, 3 = 1 Atau dapat ditulis 2 20 + –13 3 = 1 m = 2, n = –13 Akan tetapi, 20 dan 5 tidak relatif prima karena PBB20,5 = 5 ≠1 sehingga 20 dan 5 tidak dapat dinyatakan dalam m 20 + n 5 = 1 Materi Lengkap Silakan baca juga beberapa artikel menarik kami tentang Teori Bilangan, daftar lengkapnya adalah sebagai berikut. Tonton juga video pilihan dari kami berikut ini
BILANGANBerpikir Kritis. Diberikan persamaan 5^m/5^n = 5^4 a. Tentukan dua bilangan m dan n yang bernilai dari 1 sampai dengan 9 sehingga dapat memenuhi persamaan di atas b. Tentukan banyak penyelesaian dari persamaan tersebut. Jelaskan jawabanmu. Bilangan Berpangkat Bilangan Bulat BILANGAN BERPANGKAT DAN BENTUK AKAR BILANGAN MatematikaDuabilangan bulat m dan n memenuhi hubungan 2m+n=−40. Nilai minimum darip=m2+n2 adalah 25. 5.0. Jawaban terverifikasi. Diketahui dua bilangan bulat p dan q yang memenuhi hubunan q - 2p = 50. Nilai minimum dari p2 + q2 adalah . 47. 5.0. Jawaban terverifikasi.Diberikandua buah bilangan bulat tak - negatif m dan n (m t n). Algoritma Euclidean berikut mencari pembagi bersama terbesar dari m dan n. Algoritma Euclidean 1. Jika n = 0 maka m adalah PBB( m, n); stop. tetapi jika n z 0, lanjutkan ke langkah 2. 2. Bagilah m dengan n dan misalkan r adalah sisanya. 3.
Diberikan dua buah bilangan bulat tak-negatif m dan n (m≠n). Algoritma Euclidean berikut mencari pembagi bersama terbesar dari m dan n. Algoritma Euclidean 1. Jika n = 0 maka m adalah PBB(m, n); stop. tetapi jika n≠0, lanjutkan ke langkah 2. 2. Bagilah m dengan n dan misalkan r adalah sisanya. 3.
MatematikaSekolah Menengah Atas terjawab Dua bilangan bulat m dan n memenuhi hubungan 2m - n =40. nilai minimum dari p=m2+n2 adalah Iklan Jawaban 4.1 /5 394 MathSolver74 n = 2m - 40 p = m² + n² = m² + (2m - 40)² = 5m² - 160m + 1600 minimum saat p' = 0 10m - 160 = 0 m = 16 n = 32 - 40 = - 8 maka nilai minimumnya: p = 16² + (-8)² = 256 + 64 = 320
Misalkanm dan n adalah dua buah bilangan bulat dengan syarat n > 0. Jika m dibagi dengan n maka terdapat dua buah bilangan bulat unik q (quotient) dan r (remainder), sedemikian sehingga m = nq + r (1) dengan 0 r < n. Contoh 2. (i) 1987 dibagi dengan 97 memberikan hasil bagi 20 dan sisa 47: 1987 = 97 20 + 47
Jawabanpaling sesuai dengan pertanyaan Dua bilangan bulat m dan n memenuhi hubungan 2m-n=40. Nilai minimum dari p=m^(2)+n^(2) ada. Belajar. Primagama. ZeniusLand. Profesional. Fitur. Paket Belajar. Promo. Testimonial. Blog. Panduan. Paket Belajar. Masuk/Daftar. Home. Kelas 11. Matematika Wajib.4cVr3R.